Hello, I need help writing proofs for a logic and moral reasoning philosophy class. The proofs are for: 1. Premises: q -> (q &~ q) Conclusion: ~q 2. Premises: k & l
Place your order today and enjoy professional academic writing services—From simple class assignments to dissertations. Give us a chance to impress you.
Order a Similar Paper
Order a Different Paper
Hello,
I need help writing proofs for a logic and moral reasoning philosophy class.
The proofs are for:
Save your time - order a paper!
Get your paper written from scratch within the tight deadline. Our service is a reliable solution to all your troubles. Place an order on any task and we will take care of it. You won’t have to worry about the quality and deadlines
Order Paper Now1. Premises: q -> (q &~ q)
Conclusion: ~q
2. Premises: k & l
Conclusion: (k – > l) & (l -> k)
3. Premises: p & (q V r), p -> ~r
Conclusion: q V e
4. Premises: ~(p -> q)
Conclusion: ~q
5. Premises: (a V b) & (c V d), a -> (e -> (c &d)), c <-> ~d
Conclusion: e -> b
Hello, I need help writing proofs for a logic and moral reasoning philosophy class. The proofs are for: 1. Premises: q -> (q &~ q) Conclusion: ~q 2. Premises: k & l
PHI 1600 Spring 2021 (1) Premises: q -> (q &~ q) Conclusion: ~q (2) Premises: k & l Conclusion: (k – > l) & (l -> k) (3) Premises: p & (q V r), p -> ~r Conclusion: q V e (4) Premises: ~(p -> q) Conclusion: ~q (5) Premises: (a V b) & (c V d), a -> (e -> (c &d)), c <-> ~d Conclusion: e -> b
Hello, I need help writing proofs for a logic and moral reasoning philosophy class. The proofs are for: 1. Premises: q -> (q &~ q) Conclusion: ~q 2. Premises: k & l
HW 7 Create proofs for each problem that start with the premises given and end with the given conclusion. (1) Premises: p & q Conclusion: p V q p & q Simp, 1 p V q Add 2 (2) Premises: Conclusion: (p V q) V r p p V q Add, 1 (p V q) V r Add, 2 (3) Premises: p -> q Conclusion: q V r p -> q MP, 1-2 q V r Add, 3 (4) Premises: p & (q & r) r -> s Conclusion: p & (q & r) r -> s q & r Simp, 1 Simp, 2 MP, 2, 4 (5) Premises: q (p & q) -> r Conclusion: p (p &q) -> r p & q Conj 1, 2 MP 3, 4
Hello, I need help writing proofs for a logic and moral reasoning philosophy class. The proofs are for: 1. Premises: q -> (q &~ q) Conclusion: ~q 2. Premises: k & l
HW 9 Write proofs for the following problems. (1) Premises: g -> (~o -> (g -> d)) o V g ~o Conclusion: g -> (~o -> (g -> d)) o V g ~o DS 2, 3 ~o -> (g -> d) MP 1, 4 6. g -> d MP 5, 3 7. d MP 6, 4 (2) Premises: (u & (~(~p))) -> q ~o -> u ~p -> o ~o & t Conclusion: q 1. (u & (~(~p))) -> q A 2. ~o -> u A 3. ~p -> o A 4. ~o & t A 5. ~o Simp 4 6. u MP 2, 5 7. ~~p MT 3, 5 8. u & ~~p Conj 6, 7 9. q MP 1, 8 (3) Premises: m -> (u -> h) (h V ~u) -> f Conclusion: m -> f 1. m -> (h V ~u) 2. (h V ~u) -> f –3. m CA –4. u -> h MP 1, 3 –5. ~u V h MI 4 –6. h V ~u Commut 5 –7. f MP 2, 6 8. m -> f CP 3-7 (4) Premises: (i -> e) -> c c -> ~c Conclusion: 1. (i -> e) -> c A 2. c -> ~c 3. ~c V ~c MI 2 4. ~c Taut 3 5. ~(i -> e) MT 1, 4 6. ~(~i V e) MI 5 7. ~~i & ~e DM 8. ~~i Simp 7 9. i DN 8 (5) Premises: i -> ~(g V f) ~t V i Conclusion: ~f 1. i -> ~(g V f) 2. ~t V i 3. t 4. ~~t DN 3 5. i DS 2, 4 6. ~(g V f) MP 1, 5 7. ~g & ~f DM 6 8. ~f Simp 7
Hello, I need help writing proofs for a logic and moral reasoning philosophy class. The proofs are for: 1. Premises: q -> (q &~ q) Conclusion: ~q 2. Premises: k & l
HW 10 Write proofs for the following problems. (1) Premises: a -> b a -> c b -> ~c Conclusion: ~a 1. a -> b A 2. a -> c 3. b -> ~c -4. a SA -5. c MP 2, 4 -6. b MP 1, 4 -7. ~c MP 3, 6 -8. c & ~c Conj 5, 7 9. ~a IP 4-8 (2) Premises: ~(p V q) (~r) -> (~s) r -> (q V ~s) ~(p V q) (~r) -> (~s) r -> (q V ~s) -4. s SA -5. ~~s DN 4 -6. ~~r MT 2, 5 -7. r DN 6 -8. q V ~s MP 3, 7 -9. q DS 8, 5 -10. p V q Add 9 -11. (p V q) & ~(p V q) Conj 10, 1 12. ~s IP 4 (3) Premises: (~q) <-> (~p) (r <-> s) V ((r & s) V (~r & ~s)) (~r) V p s V ~q Conclusion: (~q) <-> (~p) (r <-> s) V ((r & s) V (~r & ~s)) (~r) V p s V q ((r & s) V (~r & ~ s)) V ((r & s) V (~r & ~s)) ME 5 (r & s) V (~r & ~s) Taut 6 -8. ~r & ~s SA -9. ~s Simp 8 -10. s & ~s Conj 5, 9 11. ~(~r & ~s) IP 8-10 12. r & s DS 7, 11 13. r Simp 12 14. ~~r DN 13 15. p Ds 3, 14 (4) Premises: p -> q q -> r Conclusion: p -> (q & r) p -> q q -> r -3. P SA -4. q MP 1, 3 -5.r MP 2, 4 -6. q & r Conj 4, 5 7. p -> (q & r) CP 3-6 (5) Premises: y -> (z V w) ~w (~z) V x Conclusion: (~x) -> (~y) y -> (z V w) ~w (~z) V x -4. y SA -5. z V w MP 1, 4 -6. z DS 5, 2 -7. ~~z DN 6 -8. x DS 3, 7 9. y -> x CP 4-8 10. ~x -> ~y Trans 9 (6) Premises: ~(a & b) b V c Conclusion: a -> c ~(a & b) b V c -3. a SA -4. ~a V ~b DM 1 -5. ~~a DM 3 -6. ~b DS 4, 5 -7. c DS 2, 6 8. a ->c CP 3-7 (7) Premises: x -> y ((~y) V z) & ((~y) V w) Conclusion: x -> z x -> y ((~y) V z) & ((~y) V w) -3. x SA -4. y MP 1, 3 -5. ~y V z Simp 2 -6. ~~y DN 4 -7. z DS 5, 6 x -> z CP 3-7
Hello, I need help writing proofs for a logic and moral reasoning philosophy class. The proofs are for: 1. Premises: q -> (q &~ q) Conclusion: ~q 2. Premises: k & l
HW 11 Write proofs for the following problems. (2) Premises: x -> (y & z) y -> (w & ~w) ~x -> w Conclusion: x -> (y & z) y -> (w & ~w) ~x -> w -4. ~w SA -5. ~~x MT 3, 4 -6. x DN 5 -7. y & z MP 1, 6 -8. y Simp 7 -9. w & ~w MP 2, 8 10. ~~w IP 4-9 11. w DN 10 (4) Premises: (~a) -> ((b & c) V (b & d)) ~(e V b) Conclusion: (~a) -> ((b & c) V (b & d)) ~(e V b) -3. ~a SA -4. (b & c) V (b & d) MP 1, 3 -5. ~e & ~b DM 2 -6. ~b Simp 5 –7. b & c SA –8. b Simp 7 –9. b & ~b Conj 8, 6 -10. ~(b & c) IP 7-9 –11. b & d SA –12. b Simp 11 –13. b & ~b Conj 12, 6 -14. ~(b & d) IP 11-13 -15. ~(b & c) & ~(b & d) Conj 10, 14 -16. ~((b & c) V (b & d)) DM 15 -17. ((b & c) V (b & d)) & ~((b & c) V (b & d)) Conj 4, 16 18. ~~a IP 3-17 19. a DN 18 ~(p & q) ~(p V q) ________ _______ ~p V ~q ~p &~q (6) Premises: (x V y) & (x V z) z -> w ~(w & z) Conclusion: (x V y) & (x V z) z -> w ~(w & z) -4. ~x SA -5. x V z Simp 1 -6. z DS 5, 4 -7. w MP 2, 6 -8. ~w V ~z DM 3 -9. ~~w DN 7 -10. ~z DS 8, 9 -11. z & ~z Conj 6, 10 12.~~x IP 4-11 13. x DN 12 (8) Premises: b V (~c) (~c) -> (~a) Conclusion: (~a) V b b V (~c) (~c) -> (~a) -3. a SA -4. ~~a DN 3 -5. ~~c MT 2, 4 -6. b DS 1, 5 7. a -> b CP 3-6 8. ~a V b MI 7 (10) Premises: p <-> q Conclusion: (~p) <-> (~q) p <-> q (p -> q) & (q -> p) ME 1 p -> q Simp 2 q -> p Simp 2 -5. ~p SA -6. ~q MT 4, 5 7. ~p -> ~q CP 5-6 -8. ~q SA -9. ~p MT 4, 5 10. ~q -> ~p CP 8-9 -11. (~p -> ~q) & (~q -> ~p) Conj 7, 9 12. ~p <-> ~q ME 11 (12) Premises: p -> q r V p ~(q & r) Conclusion: p <-> q p -> q r V p ~(q & r) -4. q SA -5. ~q V~r DM 3 -6. ~~q DN 4 -7. ~r DS 5, 6 -8. p DS 2, 7 9. q -> p CP 4-8 10. (p -> q) & (q -> p) Conj 1, 9 11. p <-> q ME 10
